Department of Microbiology

Teaching Plan Academic Year 2019-2020

Teacher: Dr. D.V. Vedpathak

Class	:	B.Sc.F.Y [II Semester]
Course Title	:	Microbial Nutrition and Growth
Course Code	:	U-MIB-253

UNIT NO	UNIT NAME	UNIT CONTENT	FROM	ТО	No. Of LECTURES
UNIT I	Microbial Nutrition	 1.1 Major bio-elements, minor bio- elements and growth factors 1.2 Sources of energy 1.3 Nutritional categories of microorganisms on the basis of carbon and energy source. 	11-12-19	03-01-20	10
UNIT II	Nutrient Transport	 2.1 Modes of nutrition: osmotrophic, phagotrophic 2.2 Nutrient transport and membrane function: primary and secondary transport, porins, OMP, carrier proteins 2.3 Passive diffusion 2.4 Facilitated diffusion 2.5 Active transport mechanism 2.6 Group translocation 	08-01-20	30-01-20	12

UNIT III	Bacterial Reproduction and Growth	 3.1 Microbial Reproduction – Binary fission, Budding, fragmentation and formation of conidiophores 3.2 New cell formation (Macromolecular synthesis, septum formation) 3.3 Definition of growth and growth phases 3.4 The mathematical nature and expression of growth, generation time 3.5 Measurement of growth: cell number, cell mass, cell activity 3.6 Different types of bacterial cultures – Batch culture, continuous culture, synchronous culture 	06-02-20	19-02-20	11
UNIT IV	Effect of environmental factors on microbial growth and survival	 4.1 Environmental factors affecting growth - temperature, pH, osmotic pressure, oxygen, hydrostatic pressure, heavy metals 4.2 Survival of bacteria-Bacterial sporulation and cyst formation 	12-03-20	15-04-20	12

Note: 5 to 8 Extra Lectures are required

Department of Microbiology

Teaching Plan Academic Year 2019-2020

Teacher: Dr. D.V. Vedpathak

Class :	B.Sc.T.Y [II Semester]
Course Title :	Molecular Biology-XI
Course Code:	U-MIB-665

UNIT NO	UNIT NAME	UNIT CONTENT	FROM	ТО	No. Of LECTURES
UNIT I	DNA: Structure, replication and properties	 1.1Structure 1.2Replication 1.3DNA methylation in prokaryotes 1.4Properties: physical, chemical, spectral and thermal 1.5Stability of DNA and its information content 	16-10-12	07-01-20	10L
UNIT II .		 2.1 genome, plasmone 2.2 Genes, Recon, muton, cistron 2.3 Genes within a Genome, Genome size and complexity, 2.4 Genome organization: <i>E. coli,</i> <i>Saccharomyces</i> and T4 genes and genome 	11-01-20	01-02-20	10L

UNIT III	Gene Expression	 3.1 Transcription: Structure of RNA Polymerase (RNAP), Structure of mRNA and the Process of transcription 3.2 Characteristics of Genetic code: (Triplet code, comma free, non-overlapping, degenerate, start and stop signals and wobble hypothesis 3.3 Translation: Structure of Ribosomes, t- RNA and the Process of Translation 3.4 Regulation of gene Expression: i) The <i>lac</i> Operon of <i>E. coli</i> ii) The <i>trp</i> Operon of <i>E. coli</i> 	03-02-20	24-02-20	10L
UNIT IV	Gene cloning	 4.1 Introduction, Definition and Purpose of Cloning 4.2 Outline of gene cloning procedure (shot gun method) 4.3 Insertion of target DNA into vector: Cohesive end ligation, blunt end ligation, homopolymer tailing, use of linkers and adaptors 4.4 Gel Electrophoresis 4.5 Methods of gene transfer: CaCl2Transformation, Electroporation, Liposome fusion, Transfection 4.6 Screening Strategies (In brief) Insertional inactivation Immunochemical methods Colony hybridization 4.8 Applications of gene cloning cDNA cloning of human insulin gene in <i>E.coli</i> Bt cotton 	25-02-20	18-04-20	15L

Note: 10 to 12 Extra Lectures are Required.

Department of Microbiology

Teaching Plan Academic Year 2019-2020

Teacher: Dr. D.V. Vedpathak

Class :	B.Sc.F.Y [II Semester]
Course Title :	Modern Microbial Genetics-VIII
Course Code:	P-MIG-281

UNIT NO	UNIT NAME	UNIT CONTENT	FROM	ТО	No. Of LECTURES
UNIT I	Bacterial DNA Replication, Damage and Repair	Unit of replication, Enzymes involved in replication origin and replication fork, Fidelity of replication, Extrachromosomal replicon. Types of damage: Spontaneous damage, Thermal damage, Damage due to radiation, Oxidative damage, Hydrolytic damage, Alkylation, DNA damaging agents. DNA repair pathways: Damage reversal, Base Excision repair, Nucleotide excision repair, Methyl directed mismatch repair, Very short patch repair, Recombination repair, SOS system.	16-12-19	02-01-20	10
UNIT II	Bacterial Transcription and Translation Process	Structure of RNA polymerase (RNAP), Transcription factors, Structure and Functions of different types of RNA, Promoter structure, Transcription cycle and Fidelity of transcription. Structure of ribosomes, Genetic code, Initiation complex, Activation and functioning of tRNA, Translation cycle, Polysomes, Post-translational modifications (PTMs) and Recycling.	06-12-19	23-01-20	12

UNIT III	Regulation of Gene Expression in Bacteria	Common modes of regulation: Co- ordinate regulation, Auto regulation, Negative and Positive regulation, stringent response, Lac operon, Trp operon, Arabinose operon. Transcriptional regulation: Regulation by repressors and activators, Alternative sigma factors, Regulation of RNAP activity, Regulation of transcription termination (regulation by attenuation). Translational regulation: Regulation at the level of initiation, Elongation and Termination. Regulation of gene expression in bacteriophages Introduction to Quorum-sensing Regulation of Gene Expression in bacteria.	27-01-20	13-02-20	12
UNIT IV	Genetic Recombination and Mapping in Bacteria	Background and perspectives of Genetic Recombination.Introduction to different types of genetic maps. Molecular mechanism of gene transfer and genetic mapping by: i. Co-transformation in Transformation, ii. Interrupted Mating and Time-of- Entry in Conjugation, iii. Linkage maps by breakage and re- joining in Transduction iv. Use of Transposons in Genetic Mapping.	12-03-20	01-04-20	11